A modular approach for the generation, storage, mixing, and detection of droplet libraries for high throughput screening.
نویسندگان
چکیده
The desire to make microfluidic technology more accessible to the biological research community has led to the notion of "modular microfluidics", where users can build a fluidic system using a toolkit of building blocks. This paper applies a modular approach for performing droplet-based screening, including the four integral steps of library generation, storage, mixing, and optical interrogation. Commercially available cross-junctions are used for drop generation, flexible capillary tubing for storage, and tee-junctions for serial mixing. Optical interrogation of the drops is achieved using fiber-optic detection modules which can be incorporated inline at one or more points in the system. Modularity enables the user to hand-assemble systems for functional assays or applications. Three examples are shown: (1) a "mix and read" assay commonly used in high throughput screening (HTS); (2) generation of chemically distinct droplets using microfractionation in droplets (microFD); and (3) in situ encapsulation and culture of eukaryotes. Using components with IDs ranging from 150 microm to 1.5 mm, this approach can accommodate drop assays with volumes ranging from 2 nL to 2 microL, and storage densities ranging from 300 to 3000 drops per metre tubing. Generation rates are up to 200 drops per second and merging rates are up to 10 drops per second. The impact of length scale, carrier fluid viscosity, and flow rates on system performance is considered theoretically and illustratively using 2D CFD simulations. Due to its flexibility, the widespread availability of components, and some favorable material properties compared to PDMS, this approach can be a useful part of a researcher's toolkit for prototyping droplet-based assays.
منابع مشابه
hνSABR: Photochemical Dose-Response Bead Screening in Droplets.
With the potential for each droplet to act as a unique reaction vessel, droplet microfluidics is a powerful tool for high-throughput discovery. Any attempt at compound screening miniaturization must address the significant scaling inefficiencies associated with library handling and distribution. Eschewing microplate-based compound collections for one-bead-one-compound (OBOC) combinatorial libra...
متن کاملImpact of process parameters in the generation of nanoemulsions containing omega 3 fatty acids and α-tocopherol
Nanoemulsion is an alternative and promising approach to overcome insolubility and bioavailability problems of bioactive compounds. In this study, the sonication parameter for preparing nanoemulsions with high α- tocopherol and linolenic acid content were optimized by using response surface methodology and their stability were evaluated during 2 months’ storage. The response surface analysis re...
متن کاملImpact of process parameters in the generation of nanoemulsions containing omega 3 fatty acids and α-tocopherol
Nanoemulsion is an alternative and promising approach to overcome insolubility and bioavailability problems of bioactive compounds. In this study, the sonication parameter for preparing nanoemulsions with high α- tocopherol and linolenic acid content were optimized by using response surface methodology and their stability were evaluated during 2 months’ storage. The response surface analysis re...
متن کاملNumerical Study of Droplet Generation Process in a Microfluidic Flow Focusing
Microfluidic flow focusing devices have been utilized for droplet generation on account of its superior control over droplet size. Droplet based microfluidics addressed many scientific issues by providing a novel technological platform for applications such as biology, pharmaceutical industry, biomedical studies and drug delivery. This study numerically investigated the droplet generation proce...
متن کاملAssessment of "drug-likeness" of a small library of natural products using chemoinformatics
Even though natural products has an excellent record as a source for new drugs, the advent of ultrahigh-throughput screening and large-scale combinatorial synthetic methods, has caused a decline in the use of natural products research in the pharmaceutical industry. This is due to the efficiency in generating and screening a high number of synthetic combinatorial compounds; whereas traditional ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lab on a chip
دوره 10 18 شماره
صفحات -
تاریخ انتشار 2010